

CompuScope Software Development Kit
(SDK) for C/C#

for Windows

User’s Guide

CompuScope Driver Version 4.20+

SDK Version 4.20+

P/N: 0045031
Reorder #: MKT-SWM-SDK17

0807

© Copyright Gage Applied Technologies 2005, 2006, 2007, 2008
Tel: 1-800-567-GAGE or +1-514-633-7447. Fax: 1-800-780-8411 or +1-514-633-0770

COMPUSCOPE, GAGESCOPE, AND COMPUGEN are trademarks or registered trademarks of Gage
Applied Technologies.

C#, Visual C/C++, .NET, Visual Basic, MS-DOS and Microsoft Windows are trademarks or
registered trademarks of Microsoft Corporation. LabVIEW, LabWindows/CVI, DASYLab, and
SoftWIRE are trademarks or registered trademarks of National Instruments Corporation. MATLAB
is a registered trademark of The MathWorks Inc. Agilent VEE is a trademark or registered
trademark of Agilent Technologies, Inc. Delphi is a trademark or registered trademark of Borland
Software Corporation. TestPoint is a trademark or registered trademark of Capital Equipment
Corporation.

Other company and product names mentioned herein may be trademarks or trade names of their
respective owners.

Changes are periodically made to the information herein; these changes will be incorporated into
new editions of the publication. DynamicSignals, LLC may make improvements and/or changes in
the products described in this publication at any time.

Copyright © 2005, 2006, 2007, 2008 Gage Applied Technologies. All Rights Reserved, including
those to reproduce this publication or parts thereof in any form without permission in writing from
Gage Applied Technologies.

How to reach GaGe Product Support
Toll-free phone: (800) 567-4243
Toll-free fax: (800) 780-8411

To reach GaGe Product Support from outside North America
Tel: +1-514-633-7447
Fax: +1-514-633-0770

E-mail: prodinfo@gage-applied.com
Web site: http://www.gage-applied.com
On-line Support Request Form: www.gage-applied.com/support/support_form.php

Table of Contents

PREFACE .. 4
CHAPTER 1: INSTALLATION OF COMPUSCOPE C/C# SDK ... 5
CHAPTER 2: OVERVIEW OF COMPUSCOPE C/C# SDK .. 6

OVERVIEW OF C AND C# SAMPLE PROGRAMS .. 8
CONFIGURATION SETTING INI FILES ... 9
SAMPLE PROGRAM DAT DATA FILES ... 10

CHAPTER 3: C/C# SDK SAMPLE PROGRAMS ... 11
OVERVIEW OF COMPUSCOPE API .. 11
C SAMPLE PROGRAM STRUCTURE ... 12
C# SAMPLE PROGRAMS .. 14
SAMPLE PROGRAM DESCRIPTIONS .. 14

GageSimple ... 14
GageAcquire .. 14
GageCoerce .. 15
GageMultipleRecord ... 15
GageDeepAcquisition .. 16
GageComplexTrigger ... 16
GageMultipleSystem .. 17
Digital Input CompuScope cards .. 17
Advanced Sample programs ... 18

CHAPTER 4: SPECIAL TOPICS ... 19
OPERATING COMPUSCOPE CARDS FROM UNSUPPORTED PROGRAMMING ENVIRONMENTS 19
CONVERTING FROM COMPUSCOPE ADC CODE TO VOLTAGES .. 20
DEPTH AND SEGMENT SIZE IN MULTIPLE RECORD MODE. .. 20
TRIGGER HOLDOFF ... 21
TRIGGER DELAY .. 21
COMPUSCOPE ACQUISITION TIMING DIAGRAM .. 22
REPRESENTATIVE ACQUISITION SEQUENCES .. 23

TECHNICAL SUPPORT ... 24
GAGE PRODUCTS .. 25

4 CompuScope SDK for C/C# for Windows

Preface

This manual is meant to serve as an aid to engineers using the CompuScope series of
high-speed data acquisition cards in the C or C# programming language from within the
Microsoft Windows environment.

Throughout this manual, it is assumed that you are familiar with the C or C# programming
environment. If you do not feel comfortable with C or C#, it is highly recommended that
you consult the manuals supplied to you by the vendor of your compiler before starting
any program development.

It is also assumed that you have correctly installed and configured the CompuScope
Windows drivers. It is also assumed that you are familiar with the PC and Microsoft
Windows.

The CompuScope C/C# SDK supports all GaGe CompuScope cards – PCI and
CompactPCI/PXI. Specific hardware features that are available in the SDK sample
programs, however, may not be supported by your CompuScope model. Please refer to
the CompuScope Hardware Manual for information specific to your CompuScope card in
order to determine the capabilities of your CompuScope model.

C C# VB .Net LabVIEW MATLAB CVI Delphi

Simple X X X X X X X

Acquire X X X X X X X

Coerce X X X X X

ComplexTrigger X X X X X

DeepAcquisition X X X X X

MultipleRecords X X X X X

MultipleSystems X X X X X

AdvMulRec X X

AsTransfer X X X

Average X X X X X X

MulRecAverage X X

GageFFTe X X X X X X

Callback X X

CsPrf X X X

Events X X X

FIR X X X X X

MinMaxDTC X X

CompuScope SDK for C/C# for Windows 5

Chapter 1: Installation of CompuScope C/C# SDK

If you purchased the CompuScope C/C# SDK you will have been shipped a software key
that allows installation of the SDK from the GaGe CompuScope CD. Simply select the
installation of the CompuScope C/C# SDK from the CompuScope CD and enter the key
when prompted.

By default, the CompuScope C/C# SDK will install itself in the
O/S system drive:\Program Files\Gage\CompuScope\CompuScope C_C# SDK. It is
recommended that you use the default installation location.

More detailed installation instructions are available in the GaGe CompuScope Startup
Guide, which was shipped with your order. On a 64-bit Windows O/S, the CompuScope
C/C# SDK provides both 32-bit and 64-bit LIB files, so it may be used to build full 64-bit
Windows applications from C, C# or VB.NET.

During the installation of the driver, a Windows environment variable called “GageDir” is
created. This variable points to a folder that contains CompuScope driver “common files”,
which are required for compilation of the C/C# SDK sample programs. If this folder is
moved without updating the GageDir environment variable, then this will result in an
inability to compile sample programs. Do not copy these files into the sample program
folder (which was recommended for earlier SDKs), since doing this will cause problems if
newer drivers (and their associated common files) are installed.

6 CompuScope SDK for C/C# for Windows

Chapter 2: Overview of CompuScope C/C# SDK

Structure of CompuScope C/C# SDK

The overall structure of the CompuScope C/C# SDK and its relation to the GaGe
CompuScope hardware is best described with reference to the diagram below.

At the lowest level is the CompuScope hardware, which is installed within a slot
connected to the host PC’s PCI bus. The CompuScope hardware is directly controlled by
the CompuScope Windows drivers. The drivers reside at the Windows Kernel level,
which allows direct low-level access to CompuScope hardware registers and to physical
PC RAM. The drivers communicate with Windows Applications through a Dynamically
Linked Library (DLL) called CSSSM.DLL. (Intermediate components between
CSSSM.DLL and the drivers have been omitted for clarity).

Communication through CSSSM.DLL is conducted using the CompuScope Applications
Programming Interface (API). The CompuScope API is a set of C subroutine calls or
methods that allows control of all CompuScope functionality. Communication from a
C/C# SDK sample program is made directly with CSSSM.DLL through the API with no
intermediate software layers. This explains why the best possible CompuScope
hardware performance is achievable using the C/C# SDK.

Windows Application Level

Windows Kernel Level

CSSSM.DLL

GaGe CompuScope drivers

GaGe CompuScope Hardware

C/C# SDK Sample
program

CompuScope SDK for C/C# for Windows 7

CompuScope C/C# SDK Compiler Requirements

Complete projects files for all C/C# SDK sample programs are provided for Microsoft
Visual C/C++ version 6.0 or higher. Upon opening the workspace file for any C sample
program, all supporting files, path specifications and build settings are automatically
loaded. Compiled executable version of all C and C# sample programs are provided with
the SDK for convenience.

The C sample programs may be operated under compilers other than Visual C/C++.
However, complete project files must be assembled by the user. There may be other
requirements for operating the C Sample programs under other compilers. For instance,
in order to use Borland C Builder, the GaGe CSSSM.LIB file must be imported using the
IMPLIB procedure that is described in Borland documentation. Please check your
compiler manual for other possible requirements on converting Visual C/C++ projects.

C# sample programs with identical functionality to the C sample programs are provided
for operating CompuScope hardware in the .NET environment. .NET version 2.0 is
required even if newer versions are installed.

CompuScope Systems

A CompuScope system is defined as a single CompuScope board or a group of
CompuScope boards configured as a Master/Slave multi-card CompuScope system.
Since Master/Slave CompuScope systems sample, trigger and reset simultaneously on
all channels, it is considered to be one multi-channel CompuScope system. For instance,
a Master/Slave system composed of four two-channel CompuScope boards will be
considered to be a single CompuScope system with eight available input channels.

By structuring the drivers to consider CompuScope systems, a single PC can be
equipped with almost any imaginable combination of CompuScope hardware. For
instance, a PC could be equipped with two separate Master/Slave systems of four
channels each and then an additional single independent CompuScope board for a total
of three CompuScope systems. The CompuScope Manager utility may be used to
separately list all CompuScope systems in the PC.

CompuScope systems are addressed from C or C# sample programs by first obtaining a
Handle for the System. After usage of the system is complete, the user must release the
Handle so that it is free for usage by other processes. By obtaining handles for different
systems, a single C or C# program may simultaneously operate different CompuScope
systems. Alternately, separate C or C# programs may operate independently and
simultaneously operate separate CompuScope systems by calling handles for each one.
Different programs may even access the same hardware as long as one program frees
the system handle before the other program obtains it. This is because different
applications may not simultaneously access the same CompuScope system.

While most C or C# sample programs access only a single system, understanding the
CompuScope system structure allows users to easily extend these sample programs to
multiple CompuScope system operation.

8 CompuScope SDK for C/C# for Windows

SDK Folder Structure and Content

Within the main C/C# SDK folder are several sub-folders that are listed below:

Executables: This folder contains compiled version of all sample programs. INI files are
also included that determine the configuration settings that the sample programs will use.
These executable files can be executed with no compilation required.

C Samples: This folder contains all C sample programs. Complete projects for each
sample program are contained within a folder that has the same name as the sample
program.

C# Samples: This folder contains all C# sample programs. Complete projects for each
sample program are contained within a folder that has the same name as the sample
program.

C Common: This folder contains C common files that are required for compilation for all
sample programs.

Distinct from C common files, Driver common files are installed by the CompuScope
driver installation in a folder specified by the compiler environment variable called
“GageDir”. Driver common files are also required for sample program compilation. All
sample program project files are configured to refer to both the C common files and to the
driver common files.

Overview of C and C# Sample Programs

The C and C# sample programs are intended to be convenient starting points around
which users can develop their own customized CompuScope software application. They
are not intended to be used as complex stand-alone applications with sophisticated
analysis functionality or graphical user interfaces.

The basic algorithm for all of the C and C# sample programs is the following:

1. Initialize the CompuScope driver and the CompuScope hardware.
2. Obtain the handle to the first CompuScope system in the PC.
3. Obtain the desired configuration settings from the local GaGe INI files.
4. Pass the desired configuration settings to the driver.
5. Commit the configured settings by transferring them from the driver to the

CompuScope hardware.
6. Start the CompuScope hardware to digitize data into its on-board acquisition

memory and await a trigger event.
7. Continuously check to see if the CompuScope hardware has finished the

acquisition.
8. Download the data of interest from the CompuScope hardware to a PC RAM array

variable.
9. Store the acquired data to a hard drive file according to the settings and file format

provided in the local INI file.
A list of all CompuScope sample programs is given below with a brief description of their

CompuScope SDK for C/C# for Windows 9

functionalities.

GageSimple: A simple program used to verify correct operation of the CompuScope
hardware and driver. No adjustments are possible and default CompuScope settings are
used (except for a shortened trigger time-out value).

GageAcquire: The simplest acquisition program with full configuration control of
CompuScope settings that illustrates usage of CompuScope Single Record mode. An
error message is displayed upon entry of invalid settings in the local INI file.

GageCoerce: A program that is just like GageAcquire, except that invalid settings are
coerced to available values. A message is displayed that indicates the settings that were
coerced.

GageMultipleRecord: A program that performs a CompuScope acquisition in Multiple
Record mode.

GageDeepAcquisition: A program that performs a large CompuScope acquisition and
illustrates management of the large resultant data set.

GageComplexTrigger: A program that illustrates usage of complex triggering using
multiple on-board trigger engines, if available.

GageMultipleSystem: A program that operates multiple CompuScope systems, each with
their own local INI files and output data files.

Not all possible CompuScope operation configurations are covered by the sample
programs. For instance, there is a program that handles deep acquisitions and a program
that handles acquisitions from multiple CompuScope systems. However, there is not a
program that handles deep acquisitions from multiple CompuScope systems. In order to
use both of these functionalities, the user must study GageDeepAcquisition and
GageMultipleSystem and then intelligently combine them to create a program that meets
their requirements.

Configuration Setting INI files

All C and C# sample programs except GageSimple read Windows INI files in order to
obtain CompuScope configuration settings that are used for the program’s acquisitions.
The format of the INI files is completely described in a document called
INI_FILE_DESCRIPTION.pdf that is installed with the SDK. A support function is
provided that reads INI files, parses the input setting values and loads the values into the
appropriate internal structure variables.

INI files allow configuration settings to be adjusted without altering or re-compiling the
sample program. Users need not employ INI files but may modify the sample programs
so that configuration settings are obtained elsewhere, for instance from a graphical user
interface. INI files may be used to test the CompuScope driver and SDK functionality.

The INI files provide an easy if not optimal way to program CompuScope hardware from a
non-supported programming environment, like Visual Basic. Users may simply create a
Visual Basic program that creates the required INI file, do a system call to the appropriate
executable sample program and then read resultant ASCII files created by the sample
program. For better performance, a user may call CompuScope API functions directly

10 CompuScope SDK for C/C# for Windows

from the non-supported programming environment.

Sample Program DAT Data Files

All C and C# sample programs acquire data from CompuScope hardware and store the
results in ASCII data files with file names of the form XXX_N.DAT, where N is the channel
number in the CompuScope system. These files may easily be imported into database
programs like Microsoft Excel for analysis and display.

The beginning of the DAT file is a header containing information about the acquisition that
is enclosed by two lines of minus signs (“-----------------“). Programs that read DAT files
must recognize at least three successive minus signs in order to parse a delimiter line.
The minus sign line allows easy removal of the file header during file reading. We may
add more information to the DAT file header in future but the entire header will always be
enclosed between the minus sign delimiter lines.

After the header, all DAT files contain a single column of ASCII data, where each entry
represents a single data sample. The sample format may be selected as voltage values,
where the calibration is applied in order to convert raw ADC data into voltage values. For
faster throughput, the user may instead elect to store raw ADC code values in either
decimal or hexadecimal format. Raw ADC data storage is recommended for customers
who are not concerned with the absolute amplitude of their signal but only with the signal
shape and so may forgo the voltage conversion step. Also, raw ADC values will occupy
less space on the hard disk as they are 1 to 4 Bytes per sample and the ASCII line
occupies up to 20 Bytes.

Users may easily modify the sample programs for data analysis or display, rather than
storage, by simply locating the file storage code and replacing it with alternate code.

CompuScope SDK for C/C# for Windows 11

Chapter 3: C/C# SDK Sample Programs

Overview of CompuScope API

All C and C# sample programs control CompuScope hardware using the CompuScope
Applications Programming Interface (API), which is a small set of very powerful C
subroutines or methods. The API is completely described in the CompuScope API
Reference Manual, CsAPI.chm, which is installed with the SDK. All CompuScope API
methods have names of the form CsXxxx().

Each subroutine API call or method may be called with up to three distinct types of
parameters. The first parameter type is the handle to the CompuScope system, which is
the first parameter of almost all API methods. The CsGetSystem() method is used to
search for and obtain the handle of an arbitrary or specific CompuScope system. The
handle identifies the CompuScope system that is to be used by other methods.

The second type of method parameter is the CompuScope structure variable. Each
structure variable has its own type definition that is contained within the C common file
CsStructs.h and is listed in the CompuScope API Reference Manual. When calling API
methods, all sample programs measure the size of the type definition in Bytes and pass
this value within the structure itself. The size of the structure may increase in future driver
versions. The driver, however, checks the size embedded in the structure and only
returns this number of Bytes, rather than passing back an increased number that would
lead it writing past the buffer’s allocated size and causing an error. This way, newer
drivers may be installed and operated using older programs with no recompilation
required.

The type definition for each structure type that is documented within the CompuScope
API Reference Manual lists all variables within the structure, their type, and a short
description of the variable and its functionality. Assignments to variables within the
structures may be to straight numerical values or to pre-defined constants that are all
listed within the CompuScope API Reference Manual.

The third type of method parameter is a simple control parameter, which must be
assigned to a CompuScope API pre-defined constant. All constants are listed in the API
Reference Manual. All constants have capitalized names. Users must always use
constant names rather than their numerical values, since we reserve the right to change
constant values in future.

The CompuScope API provides an API method called CsGetSystemCaps(), which
obtains the capabilities of a CompuScope system. This method is provided for users who
must write an application that supports an unknown CompuScope system consisting of
arbitrary CompuScope models. This method is used extensively in GageScope, for
instance, which must support any arbitrary CompuScope system configuration.
CsGetSystemCaps() is very powerful, however, it makes coding quite complex since it
must generically account for any CompuScope configuration. Consequently, usage of
this function is only recommended where it is deemed to be absolutely necessary.

12 CompuScope SDK for C/C# for Windows

C Sample Program Structure

All C sample programs are Windows console applications whose output messages are
printed within a Windows Console Box, which resembles the Microsoft DOS environment.
The main sample program consists of the int _tmain(), which is the standard frame for
console applications with Unicode compatibility. None of the sample programs explicitly
use Unicode strings. Throughout the programs, however, string variables are always
handled in a Unicode-compatible fashion. This way, the customer may easily add
Unicode strings, if required.

In addition to API functions, the sample programs use support functions. These are not
API subroutines but are useful functionality groupings that are provided for convenience.
All support functions that are required for multiple sample programs are defined within
CsAppSupport.dll.

All C sample programs begin with a call to CsInitialize(), which initializes the
CompuScope hardware and drivers. Subsequently, a call is made to CsGetSystem(),
which obtains a handle to the first available CompuScope system. All subsequent calls to
the CompuScope drivers will use this handle. Next, a call is made to CsGetSystemInfo(),
which obtains static information about the characteristics of the current CompuScope
system.

The next step in all C sample programs is a call to ConfigureSystem(). This support
function reads the local INI file, parses the setting values and assigns these values to the
correct CompuScope structure variables. If the user wishes to obtain setting values from
a source other than an INI file, such as from a GUI interface or some other input source,
then they must replace ConfigureSystem() with appropriate CsSet() calls. GageSimple
illustrates the direct assignment and implementation of CompuScope configuration
settings.

Internally, ConfigureSystem() calls the LoadConfiguration() support function, which in turn
calls lower-level LoadXxxxxConfiguration() support functions, which actually do the
parsing of the INI file data. Finally, ConfigureSystem() uses the CsSet() API method to
set all configuration variables in the driver.

ConfigureSystem() does not communicate with the CompuScope hardware in any way.
Settings are only committed or passed from the CompuScope structure variables to the
CompuScope hardware by a call to the CsDo() API method using the ACTION_COMMIT
or ACTION_COMMIT_COERCE constant.

The next step is to call LoadConfiguration() with the APPLICATION_DATA constant,
which obtains Application settings. These settings include variables related to the data of
interest that is to be downloaded from the CompuScope on-board memory after
acquisition. Knowledge of these settings is required in order to allocate the size of target
data buffers within the sample program.

If no valid INI file is found, default settings are used by the program and an indicative
message is displayed. Now that all CompuScope structures have been configured, a call
is made to CsDo(), using the ACTION_COMMIT or ACTION_COMMIT_COERCE
constant. This call passes all configuration settings to the CompuScope hardware, thus
committing them.

The next step is a call to CsDo() using the ACTION_START constant. This call starts the

CompuScope SDK for C/C# for Windows 13

CompuScope system acquiring data and awaiting a trigger event (or trigger events in the
case of Multiple Record mode).

Once the CompuScope system is acquiring, the DataCaptureComplete() support function
is called. This function does not exit until the CompuScope acquisition is complete.
Internally, the function calls CsGetStatus() repeatedly until acquisition is complete.

Unlike in previous drivers, the CompuScope hardware is not actually polled directly by
CsGetStatus(). Instead, CsGetStatus() polls an internal driver variable that is updated by
the hardware. On newer CompuScope models, this variable is actually updated by a
hardware interrupt. Typical GaGe user applications are single-threaded and so have
nothing to gain by using interrupts. Advanced multi-threaded applications for newer
CompuScope models, however, can save wasted polling time through the use of
hardware interrupts by using event notification. For more details, refer to the
CompuScope API Reference Manual description of the CsGetEventHandle() method.

Next, buffers that will hold the data to be transferred from CompuScope on-board
acquisition memory are allocated using the VirtualAlloc() function. Allocation is done in
accordance with the requirements imposed by the Application settings. The sample
programs allocate a buffer for the raw data and one for the converted voltage data, if
required.

Under Windows, buffer allocation is done both in real physical RAM and in the swap file,
which is actually a reserved section of the hard drive. There is no way to know how much
memory will be allocated in real physical RAM and how much will be allocated in the swap
file. In fact, the allocation fractions may even change with time. For smaller buffer
allocations, the buffer may reside completely in PC RAM, while for larger allocations the
swap file is also used. Of course, use of the swap file requires hard drive access, which
will slow down performance. For acquisitions with a total size of about 16 MB or more,
usage of the GageDeepAcquisition sample program is recommended. This program is
specifically designed to minimize swapping.

The next step is to transfer data from CompuScope memory for each channel to the raw
ADC data buffer using the CsTransfer() method. For GageMultipleRecord, data are
transferred for multiple segments. For GageDeepAcquisition, data are transferred in
pages, as described below. The data are then converted into Volts, if requested, using
the ConvertToVolts() support function. The conversion step may be omitted for best
transfer and storage performance.

An important variable returned by CsTransfer() is the OutData structure. Contained in this
structure are the ActualStart and ActualLength variables. Values of these variables may
be different from the requested TransferStart and TransferLength values that are provided
in the InData structure. The slight difference results from a combination of CompuScope
hardware memory architecture and driver buffer alignment requirements and may vary for
different CompuScope models. It is very important that code which acts on the
transferred data uses the actual values and not the requested values.

Data are stored in the appropriate number of DAT files, whose format is described earlier
in this document. The user can easily modify the storage portion of the code for data
display, analysis or transfer to another process. Finally, all allocated buffers and the
CompuScope system handle are freed.

14 CompuScope SDK for C/C# for Windows

C# Sample Programs

All C sample programs are also provided as C# projects with identical functionality. The
C# projects may be operated in the .NET environment. While the .NET environment is
good for web-based requirements, it is unclear how this environment adds any real value
for CompuScope operation. Furthermore, management of large data buffers and process
interoperability is not optimal under .NET. Consequently, it is recommended that users
remain in the C Run Time environment, if possible.

The .NET environment requires that code be “managed”, which means that it is platform-
independent, among other things. Strictly speaking, it is not possible for hardware drivers
to be managed. Consequently, we have added a translation layer between the drivers
and the C# sample programs that provides interoperability. This translation layer
essentially defines a new API – a C# CompuScope API. While structurally and
semantically this API is similar to the C CompuScope API, it is documented separately in
NETCompuScopeAPI.chm. The C# API is implemented in GageFunctions.dll, which is
installed in your .NET GAC. GageFunctions.dll is compatible with NET Framework 2.0
and is also CLR compliant. Consequently, GageFunctions.dll provides support not only
for C# but also for any other .NET language. GageFunctions.dll was written with
performance in mind and has a minimal footprint in memory. Nonetheless, this layer does
introduce an additional overhead and a slight decrease in performance.

Sample Program Descriptions

GageSimple

GageSimple is not intended as a starting point for customer applications but is a simple
test program to confirm correct operation of the CompuScope hardware, the Windows
drivers, and the C/C# SDK.

GageSimple grabs the handle to the first CompuScope system and does a single
acquisition using the driver defaults for all configuration parameters. The driver defaults
are a set of default configuration parameters that are tailored to each CompuScope
hardware model. The only non-default parameter used is a short trigger time-out value
(rather than the default trigger time-out value of infinity) so that a signal is acquired even if
the trigger conditions are not met. This program operates only on a single CompuScope
card. In the event of a Master/Slave CompuScope system, the program only addresses
the first card in the first system.

Again, GageSimple should only be used to test hardware and software integrity and
should not be developed by the customer into a custom program, since there are better
sample programs for this purpose. While the code for GageSimple is provided for
completeness, users should only execute the compiled version in order to verify that no
errors occur and that the output DAT files contain correct data.

GageAcquire

GageAcquire is the main sample program for Single Record capture from a single
CompuScope system. In the event of multiple CompuScope systems, the program only

CompuScope SDK for C/C# for Windows 15

operates the first available system. The program accepts configuration settings from the
local INI file and uses them to operate the CompuScope system.

If any of the configuration settings are determined by the program to be invalid for the
active CompuScope system, the program will stop and a descriptive error string will be
displayed. Users who prefer the program to continue operating upon invalid setting entry
should use GageCoerce.

GageCoerce

GageCoerce is identical to GageAcquire, except for its handling of invalid configuration
setting entry. In this event, the program will not stop with an error message. Rather than
stopping, the program will coerce the settings to values that are available on the current
CompuScope system. Any setting coercions are displayed, using the
ReportAcquisitionChanges() support function.

Coercion is actually executed by CsDo() by using the ACTION_COMMIT_COERCE
modifier. The coercion procedure varies for the different types of configuration settings.
For the internal sampling rate, for instance, the coercion procedure chooses the closest
available sampling rate. For example, if the user enters 6600000 as an internal sampling
rate and if only 50 MS/s and 100 MS/s are available, the coercion procedure will choose
50 MS/s.

Except for the coercion, operation of GageCoerce is identical to that for GageAcquire. All
sample programs other than GageCoerce will stop with an error upon invalid setting entry,
as does GageAcquire. These programs use the ACTION_COMMIT modifier for CsDo()
and not ACTION_COMMIT_COERCE. The user can easily modify other programs to
coerce settings simply by following the logic illustrated in GageCoerce.

GageMultipleRecord

GageMultipleRecord is the sample program for Multiple Record acquisition from a single
CompuScope system. Multiple Record mode allows multiple waveforms to be rapidly
acquired and stacked in on-board CompuScope memory. For instance, a CompuScope
card with 32 MegaSamples of on-board memory may acquire up to 16,000 records of
2000 samples each in Multiple Record mode. Between successive record acquisitions,
the CompuScope acquisition engine is rapidly re-armed in the CompuScope hardware
with no CPU interaction required. Consequently, in Multiple Record mode, a
CompuScope system is capable of capturing bursts of triggers that repeat at rates of
100,000 triggers per second and more.

The Acquisitions variable called SegmentCount within the INI file is used to set the
number of records to be acquired. If this exceeds the maximum possible number of
records, then an error will occur. The SegmentCount INI file Application variable is used
to specify the number of Multiple Records to be downloaded and stored and must be less
than or equal to the number of acquired records.

The Acquisitions variable called SegmentSize within the INI file is used to control the size
of each Multiple Record segment. For some CompuScope models, SegmentSize may be
set larger than the Depth so that pre-trigger data may be acquired. Older CompuScope
hardware does not support pre-trigger data in Multiple Record mode and so SegmentSize

16 CompuScope SDK for C/C# for Windows

will be internally coerced so that it is equal to Depth. Refer to your CompuScope
Hardware Manual for information specific to the capabilities of your CompuScope model.

When executed, GageMultipleRecord first initializes and configures the CompuScope
systems, as in GageAcquire. Next, a single Multiple Record Acquisition is performed.
After the acquisition is finished, the program downloads records sequentially and stores
each in its own ASCII DAT file.

Newer CompuScope models like the CS14200, CS14105 and CS12400 support time-
stamping in Multiple Record mode. Time-stamping is achieved using a high-speed on-
board counter that may be clocked by an internal fixed oscillator source or by a source
that is derived from the sampling clock. When a trigger event occurs, the current counter
value is latched, thus stamping the time of occurrence of the trigger event. After a
Multiple Record acquisition, GageMultipleRecord downloads all time stamp data if the
CompuScope model supports the feature. The counter values are converted into
dimensions of time and each time-stamp value is stored in the header of the associated
DAT file.

GageDeepAcquisition

GageDeepAcquisition is the sample program for large acquisitions from a single
CompuScope system. The definition of large varies with system configuration but is
roughly of order 16 MegaBytes. For small acquisitions, a C program is fully capable of
downloading the entire acquisition into a physical PC RAM buffer. For larger acquisitions,
however, the host PC will begin to use the swap file which is a section of the hard drive
that Windows treats like PC RAM. Usage of the swap file causes the hard drive to spin
and slows down execution.

In order to avoid trying to keep large data sets in the program at one time,
GageDeepAcquisition manages deep acquisitions by dividing them up into more
manageable data pages. By downloading only a page of data at a time, the program may
manage very large acquisitions without having to use the swap file. The default page size
is 32 k.

The program does initialization, configuration setting and acquisition as usual. After the
acquisition, however, only a single data page at a time from the acquisition is downloaded
and appended to the DAT file. Successive data pages are downloaded and are
appended to the DAT file until all acquired data have been stored. In this way, the
program is able to manage an arbitrarily large acquisition without ever holding more than
one data page in its memory at one time. The logic illustrated in GageDeepAcquisition
may be applied to allow other sample programs to similarly manage deep acquisitions
and avoid swapping.

GageComplexTrigger

GageComplexTrigger is a sample program that illustrates complex triggering in Single
Record mode. Some CompuScope models are equipped with two on-board trigger
engines that can be used for complex triggering. On these models, the two engines can
be configured independently and their outputs are Boolean ORed together so that either
engine may cause a trigger event. For simple triggering, the second engine is disabled.

CompuScope SDK for C/C# for Windows 17

The Trigger group of keys in the INI files allows the separate configuration of each trigger
engine. For instance, by setting the two engine sources to Channel 1 and Channel 2, the
user may configure the system to trigger on a pulse that occurs on either channel.
Alternately, by setting both engine sources to Channel 1 but selecting different levels and
slopes for each, the user may configure the system to do windowed triggering, where the
system trigger if the input level leaves a specified voltage range.

GageMultipleSystem

GageMultipleSystem is the multi-threaded sample program for acquisition from multiple
CompuScope systems. The program begins by obtaining the number of available
CompuScope systems. In a loop, the program then sequentially obtains the handle to
system number N, reads an INI file called SystemN.ini and then launches a thread for
CompuScope system number N that is very similar to GageAcquire. Threads are
launched for each system and then the program waits until all threads are finished before
freeing all resources and terminating.

GageMultipleSystem acquires waveforms from all the CompuScope systems in a
completely asynchronous fashion. Only one CompuScope system is operated at a time
but the switching amongst them is indeterminate and is controlled by the Windows
process management. The user must keep this in mind in designing the overall
experiment. For instance, the program can be used to trigger all CompuScope systems
simultaneously. In order to do this, however, the user must ensure that trigger signals are
inhibited until all CompuScope systems are armed and awaiting a trigger event. If both
CompuScope systems are not so prepared, an earlier trigger may otherwise trigger one
system and not the other.

Digital Input CompuScope cards

All SDK programs can be used to perform acquisitions from digital input CompuScope
cards, such as the CS3200 and CS3200C. Parameters specific to digital input cards may
be set by using CsSet() with the appropriate modifiers.

The CS3200 and CS3200C allow three digital input sample width modes for optimal
memory usage: 8-bit, 16-bit and 32-bit. These modes can be selected using CsSet() with
the CS_ACQUISITION modifier using the following u32Mode element values in the
CSACQUISITIONCONFIG structure:

CS_MODE_SINGLE - to activate 8-bit digital input mode
CS_MODE_DUAL - to activate 16-bit digital input mode
CS_MODE_QUAD - to activate 32-bit digital input mode

The CS3200 and CS3200C provide different digital input signal level protocols, depending
on the model. Different digital input protocols can be selected using CsSet() with the
CS_CHANNEL modifier and using the following u32InputRange element values in the :
CSCHANNELCONFIG structure:

CS_GAIN_CMOS - to activate CMOS digital voltage levels
CS_GAIN_TTL - to activate TTL digital voltage levels
CS_GAIN_ECL - to activate ECL digital voltage levels

18 CompuScope SDK for C/C# for Windows

CS_GAIN_PECL - to activate PECL digital voltage levels
CS_GAIN_LVDS - to activate LVDS digital voltage levels

The CS3200 and CS3200C allow inversion of the sampling clock so that digital samples
are acquired on the falling edge of the clock signal rather than on the rising edge. In
order to select the falling edge, simply perform a Boolean OR on the u32Mode element
values in the CSACQUISITIONCONFIG structure with the constant
CS_MODE_CS3200_CLK_INVERT before calling CsSet() with the CS_ACQUISITION
modifier.

Again, using the above special instructions for digital input CompuScope cards, all C/C#
SDK sample programs may be used to operate a digital CompuScope card.

Advanced Sample programs

The C/C# SDK may contain “Advanced” sample programs in addition to the documented
sample programs. Usage of some of these files may require special CompuScope
hardware options, on-board firmware processing images or special driver versions.
These sample programs are provided as-is with limited documentation in the form of an
accompanying explanatory text file.

CompuScope SDK for C/C# for Windows 19

Chapter 4: Special Topics

Operating CompuScope cards from Unsupported Programming
Environments

There are three CompuScope SDKs, one for C/C#, one for MATLAB and one for
LabVIEW. CompuScope cards may be operated from other programming environments,
however, using the C/C# SDK as the starting point. Explicit provisions are made within
the C/C# for CompuScope operation within the Visual Basic, LabWindows/CVI and Delphi
environments.

The C/C# includes a version of GageAcquire and GageSimple that operates under Visual
Basic.NET. These projects are located within the “VB.NET Samples” folder in the “C#
Samples” folder of the C/C# SDK. The user should follow the GageAcquire project as a
guide for translating other C sample programs for operation under Visual Basic.NET.

All C sample programs may be compiled using the LabWindows/CVI compiler, all
necessary translations are done within the CsCVI.h file . The user can, therefore, access
all CompuScope functionality from LabWindows/CVI. No LabWindows/CVI GUI is
provided, therefore the user must construct one if required.

For user convenience GageAcquire and GageSimple have been ported to the Delphi
environment. These examples are located in the Delphi folder of the C/C# SDK. The user
may use these examples as a guide to port other examples to the Delphi environment.

While no explicit code is provided for programming environments other than C, C#,
Visual Basic.NET and LabWindows/CVI, the C/C# may be used as the starting point for
CompuScope operation in unsupported programming environments, such as VEE,
DASYLab, SoftWIRE, or TestPoint.

The simplest method of controlling a CompuScope card from unsupported programming
environments is to make use of the compiled executable version of the C sample
programs. From any programming environment, the user can make a system call to a
compiled C program executable, which will use configuration settings from the
corresponding INI file. Resultant DAT text data files produced by the executable may
then be read directly into the programming environment for display, analysis or storage.
While it will not provide optimal performance, this method of system calls to an executable
combined with file-mediated data transfer has the advantage that it can be implemented
very quickly and easily.

For better performance, the user may call the CompuScope driver Dynamically Linked
Library (DLL) directly from an unsupported programming environment. For simplicity, the
user might continue to read configuration settings from an INI file but then read
CompuScope data directly through the CompuScope driver DLL so that rapid repetitive
acquisitions may be performed. Alternatively, users may elect to control configuration
settings directly from the unsupported programming environment through the DLL. The
CompuScope API is uniform for all CompuScope models so that once support has been
provided for one CompuScope model within an unsupported programming environment,
support is automatically available for all CompuScope models.

20 CompuScope SDK for C/C# for Windows

Converting from CompuScope ADC Code to Voltages

All C/C# SDK sample programs are configured to save DAT file data that have been
scaled so that stored sample values are in Volts. The user may bypass the voltage
conversion step in order to achieve the best repetitive capture performance. Voltage
conversion may then be done at leisure in post-processing.

Raw ADC code data may be converted to voltage data for all CompuScope cards using
the following equation:

() OffsetDC
2

VoltageInputScaleFull
Resolution

ADC_CodeOffsetVoltage _+×−=

The Offset and Resolution for the CompuScope system may be obtained using the
CsGet() API method using the CS_ACQUISITION Index. The resolution and offset values
are returned in the CSACQUISITIONCONFIG structure as the values of i32SampleRes
and i32SampleOffset, respectively. If the user has applied a DC Offset voltage to the
signal, then this voltage may be obtained by calling CsGet() with the CS_CHANNEL
index. The DC offset voltage is returned as the value of i32DcOffset within the
CSCHANNELCONFIG structure.

For instance, for the CompuScope 82G, Offset=127 and Resolution=128. Let us assume
that the user has selected the +/-1 Volt Input Range, for a Full Scale Input Range of
2 Volts. Let us further assume that the user has applied a 200 mV DC offset. For this
example, therefore, the voltage conversion equation becomes:

Volts 0.2Volts1
128

127 +×−= ADC_CodeVoltage

Depth and Segment Size in Multiple Record Mode

On all CompuScope models, on-board acquisition memory is arranged as a circular buffer
for Single Record acquisitions. This means that when the CompuScope is storing
acquired data and it reaches the end of the memory, the memory counter rolls over. Data
storage wraps around the memory and starts digitizing into the beginning of memory. The
end of an acquisition is always initiated by the trigger event, after which the requested
number of post-trigger data points is acquired and then the acquisition terminates. This
circular memory architecture allows the CompuScope to accumulate an amount of pre-
trigger data of to up to the amount of CompuScope acquisition memory per channel less
the amount of post-trigger data.

Newer CompuScope models, such as the CS82G, CS12400, CS14200 and CS14105,
allow for the accumulation of pre-trigger data in Multiple Record mode. On these models,
memory is divided into multiple circular buffers, the number of which is equal to the
number of records specified. The Segment Size control allows the user to specify the
size of each circular buffer. This way, the user may select the amount of memory
reserved for pre-trigger data accumulation. For instance, if the user selects a post-trigger
Depth of 2048 and a Multiple Record Segment Size of 8192, then up to 6144 Samples of

CompuScope SDK for C/C# for Windows 21

pre-trigger data may be acquired. Increasing the Segment Size beyond the Depth will
accordingly reduce the maximum possible number of Multiple Records. In fact, on newer
CompuScope models, Segment Size has the same effect in Single Record mode, which
is, architecturally speaking, just a special case of Multiple Record Mode with a Number of
Records equal to 1.

Only newer CompuScope models such as the CS82G, CS14200, CS14105 and
CS12400, support pre-trigger Multiple Record mode. On older CompuScope models
without pre-trigger data in Multiple Record mode, the Segment Size setting will have no
effect. The value is ignored and is forced to be equal to the Depth by the drivers. If
queried, Segment Size will be returned with a value equal to the Depth. In Single Record
mode on older CompuScope models, the effective Segment Size is the total available
channel acquisition memory.

Trigger Holdoff

Trigger Holdoff is a feature that is useful for ensuring the accumulation of a specified
amount of pre-trigger data. Trigger Holdoff setting specifies the amount of time, in
Samples during which the CompuScope hardware will ignore trigger events after
acquisition has begun and pre-trigger data are being acquired.

Without Trigger Holdoff, there is no guarantee that a given number of pre-trigger samples
will be acquired, since a trigger event may occur immediately after acquisition, leading to
a very small number of pre-trigger points. By ignoring trigger events for a time equal to
the specified Trigger Holdoff, the accumulation of a number of pre-trigger points equal to
the Holdoff setting is guaranteed.

The downside of ensuring pre-trigger data is that triggers are ignored, so that important
trigger events may be missed. For instance, in lightning monitoring applications,
researchers usually want to acquire pre-trigger data. These data give information about
events immediately preceding the lightning strike which triggers the CompuScope
hardware. Lightning strikes may occur very close together in time, however, and missing
a lighting pulse is much worse than missing pre-trigger data. Consequently, lightning
testers should not use the Trigger Holdoff but should simply accept acquisition of only the
amount of pre-trigger data that naturally occur between triggers. The user must decide
whether to use Trigger Holdoff, based on the application.

Trigger Delay

New-generation PCI CompuScope models such as the CS14200, CS14105 and
CS12400, support a feature called Trigger Delay. This feature is useful for situations
where the signal portion of interest occurs long after the trigger event. Normally, with a
Trigger Delay of zero, the trigger event activates count-down of the post-trigger depth
counter, which was preloaded with the post-trigger depth. The counter is decremented by
one count for each sample acquired after the trigger event. When the counter value
reaches 0, the acquisition is terminated. In this way, the CompuScope acquires a number
of samples equal to the depth after the trigger event.

A non-zero Trigger Delay value is used to delay the beginning of the countdown of the
post-trigger depth counter. The Trigger Delay value sets the number of samples that the
CompuScope hardware will wait after the trigger event occurs before beginning the count-

22 CompuScope SDK for C/C# for Windows

down of the depth counters. The SegmentSize may be set equal to the depth so that the
CompuScope hardware need not waste memory by storing data that are not of interest.

As an example, consider a signal where the feature of interest is 20,000 samples long but
begins 100,000 samples after the trigger event. In this case, the SegmentSize and Depth
should be set to 20,000. The Trigger Delay value should be set to 100,000. Without the
Trigger Delay feature, the user would be forced to set the Depth to 120,000 Samples and
waste 100,000 Samples of memory, even if only the last 20,000 were downloaded. Using
the Trigger Delay feature, however, only the data of interest are retained in CompuScope
memory.

CompuScope Acquisition Timing Diagram

The timing diagram below is provided as an aid for understanding the timing of events
during the acquisition of a segment or record. The pseudo—signals are indicated as
HIGH when the labeled function is active.

A CompuScope system always acquires from the beginning of the Segment Start pulse
and continues until the Depth counter’s count-down has expired. The memory allotted to
the acquisition is equal to the Segment Size and is arranged in a circular fashion. Notice
that raw trigger events are ignored until the Trigger Holdoff time has elapsed.

Note also that, although pre-trigger data are acquired throughout the time between
Segment Start and the Trigger Event, most of the acquired pre-trigger data have been
overwritten in the diagram below and only a small fraction are available for download.

CompuScope SDK for C/C# for Windows 23

Representative Acquisition Sequences

The diagram below illustrates important representative acquisition sequences that are
presented for key acquisition requirements. The first sequence shows a generalized
acquisition with data collected during all acquisitions phases illustrated: overwritten pre-
trigger data, available pre-trigger data, data acquired during the Trigger Delay and post-
trigger data.

The second sequence shows an acquisition using a trigger delay where the Segment
Size is made equal to the Depth. This acquisition sequence is useful for applications
where the signal region of interest occurs long after the trigger event, as is often the case
for Time Domain Reflectometry methods such as ultrasonics, radar and lidar.

The third sequence shows the acquisition in the case of a rapidly occurring trigger. In this
case, the Segment size has been set bigger than the Depth. However, the trigger event
occurred so rapidly after the start of the acquisitions that there was insufficient time to fill
the memory allotted for pre-trigger data, which contains (Segment Size – Depth) samples.
Consequently, there is less preceding valid trigger data than the maximum amount of pre-
trigger data available. If transfer of invalid data were requested, the driver would return
an actual start address that is equal to the address of the first valid pre-trigger point.
More pre-trigger data could have been acquired using Trigger Holdoff at the expense
ignoring and so possibly missing triggers.

The final sequence shows acquisition in the case of a trigger that occurs long after
Segment Start so that all memory allotted for pre-trigger data has been filled up. In fact,
the sequence shows that still more pre-trigger data were acquired but were overwritten by
post-trigger data.

CompuScope SDK for C/C# for Windows 24

Technical Support

We offer technical support for all our Software Development Kits.

In order to serve you better, we have created a web-based technical support system that is
available to you 24 hours a day.

By utilizing the internet to the fullest, we are able to provide you better than ever technical support
without increasing our costs, thereby allowing us to provide you the best possible product at the
lowest possible price.

To obtain technical support, simply visit:

www.gage-applied.com/support/support_form.php

Please complete this form and submit it. Our form processing system will intelligently route your
request to the Technical Support Specialist (TSS) most familiar with the intricacies of your product.
This TSS will be in contact with you within 24 hours of form submittal.

In the odd case that you have problems submitting the form on our web site, please e-mail us at

support@gage-applied.com

As opposed to automatic routing of technical support requests originating from the GaGe web site,
support requests received via e-mail or telephone calls are routed manually by our staff. Providing
you with high-quality support may take an average of 2 to 3 days if you do not use the web-based
technical support system.

Please note that Technical Support Requests received
via e-mail or by telephone will take an average of 2 to 3 days to process.

It is faster to use the web site!

When calling for support we ask that you have the following information available:

1. Version and type of your CompuScope SDK and drivers.

(The version numbers are indicated in the About CD screen of the CompuScope CD.
Version numbers can also be obtained by looking in the appropriate README.TXT files)

2. Type, version and memory depth of your CompuScope card.

3. Type and version of your operating system.

4. Type and speed of your computer and bus.

5. If possible, the file saved from the Information tab of the CompuScope Manager utility.

6. Any extra hardware peripherals (i.e. CD-ROM, joystick, network card, etc.)

7. Were you able to reproduce the problem with standalone GaGe Software (e.g. GageScope,

GageBit)?

CompuScope SDK for C/C# for Windows 25

GaGe Products

For ordering information, see Gage’s product catalog, or visit our web site at
http://www.gage-applied.com

CompactPCI Bus Products CompuScope 82GC 8 bit, 2 GS/s Analog Input Card
 CompuScope 14100C 14 bit, 100 MS/s Analog Input Card
 CompuScope 1610C 16 bit, 10 MS/s Analog Input Card
 CompuScope 3200C 32 bit, 100 MHz Digital Input for CompactPCI Bus

PCI Bus Products CompuScope 1610 16 bit, 10 MS/s Analog Input Card
 CompuScope 1602 16 bit, 2.5 MS/s Analog Input Card
 CompuScope 14200 14 bit, 200 MS/s Analog Input Card
 CompuScope 14105 14 bit, 105 MS/s Analog Input Card
 Octopus multi-channel digitizer family Up to 8 channels on a single-slot PCI card,

12 or 14-bit resolution, 10 to 125 MS/s
 CompuScope 12400 12 bit, 400 MS/s Analog Input Card
 CompuScope 1220 12 bit, 20 MS/s Analog Input Card
 Cobra CompuScope family 8-bit, up to 2 GS/s Analog Input Card
 BASE-8 CompuScope 8-bit, up to 500 MS/s Analog Input Card
 CompuScope 3200 32 bit, 100 MHz Digital Input for PCI Bus

CompuGen PCI CompuGen 4300/4302 12 bit, 4-channel, 300 MHz Analog Output Card
 CompuGen 8150/8152 12 bit, 8-channel, 150 MHz Analog Output Card
 CompuGen 11G/11G2 12 bit, 1 GHz Analog Output Card

CompuGen ISA CompuGen 1100 12 bit, 80 MS/s Analog Output Card
 CompuGen 3250 32 bit, 50 MHz Digital Output Card

Application Software GageScope World's Most Powerful Oscilloscope Software
 GageBit Digital Input/Output Software
 CompuGen for Windows Arbitrary Waveform Generator Software for Windows

Software Development Kits CompuScope SDK for C/C#
 CompuScope LabVIEW SDK
 CompuScope MATLAB SDK
 CompuGen SDK for C/C++
 CompuGen SDK for LabVIEW
 CompuGen SDK for MATLAB

Instrument Mainframes LapScope-1

1-slot PCI Expansion Chassis for CompuScope and
CompuGen cards

 LapScope-2 2-slot PCI Expansion Chassis for CompuScope and
CompuGen cards

 Instrument Mainframe 7500 4-slot Portable Instrument Mainframe for
CompuScope and CompuGen cards

 Instrument Mainframe 2020E 18 PCI slot and 1 ISA slot Instrument Mainframe for
CompuScope and CompuGen cards

 Instrument Mainframe 4000 5 PCI-X and 1 PCI slot Instrument Mainframe for
CompuScope and CompuGen cards

 Instrument Mainframe 8000C
7 cPCI/PXI slot Instrument Mainframe for
CompuScope CompactPCI/PXI cards

	Preface
	Chapter 1: Installation of CompuScope C/C# SDK
	Chapter 2: Overview of CompuScope C/C# SDK
	Structure of CompuScope C/C# SDK
	CompuScope C/C# SDK Compiler Requirements
	CompuScope Systems
	SDK Folder Structure and Content
	Overview of C and C# Sample Programs
	Configuration Setting INI files
	Sample Program DAT Data Files

	Chapter 3: C/C# SDK Sample Programs
	Overview of CompuScope API
	C Sample Program Structure
	C# Sample Programs
	Sample Program Descriptions

	Chapter 4: Special Topics
	Operating CompuScope cards from Unsupported Programming Environments
	Converting from CompuScope ADC Code to Voltages
	Depth and Segment Size in Multiple Record Mode
	Trigger Holdoff
	Trigger Delay
	CompuScope Acquisition Timing Diagram
	Representative Acquisition Sequences

	Technical Support
	GaGe Products

